2 00 2 Noether - Lefschetz for K 1 of a Surface , Revisited

نویسنده

  • JAMES D. LEWIS
چکیده

Let Z ⊂ P be a general surface of degree d ≥ 5. Using a Lefschetz pencil argument, we give a elementary new proof of the vanishing of a regulator on K1(Z). 1. Statement of result Let Z be a smooth quasiprojective variety over C, and for given nonnegative integers k,m, let CH(Z,m) be the higher Chow group as introduced in [Blo1]. In [Blo2], Bloch constructs a cycle class map into any suitable cohomology theory. In our setting, the corresponding map is: clk,m : CH (Z,m) → H D (Z,Q(k)), whereH D (Z,Q(k)) is Deligne-Beilinson cohomology, which fits in a short exact sequence 0 → H (Z,C) F kH2k−m−1(Z,C) +H2k−m−1(Z,Q(k)) → H D (Z,Q(k)) → F H(Z,C) ⋂ H(Z,Q(k)) → 0. Our primary interest is when Z is also complete, and m = 1. Thus one has the corresponding map: clk,1 : CH (Z, 1) → H (Z,C) F kH2k−2(Z,C) +H2k−2(Z,Q(k)) . Let Hg(Z) := H2k−2(Z,Q(k−1))∩F H(Z,C) be the Hodge group. Then one has an induced map clk,1 : CH (Z, 1) → H (Z,C) F kH2k−2(Z,C) + Hg(Z)⊗C +H2k−2(Z,Q(k)) . It is known that clk,1 is trivial for Z a sufficiently general complete intersection and of sufficiently high multidegree. This is an consequence of the Date: December 13, 2002. 1991 Mathematics Subject Classification. 14C25, 14C30, 14C35.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 M ay 2 00 7 GROMOV - WITTEN THEORY AND NOETHER - LEFSCHETZ THEORY

Noether-Lefschetz divisors in the moduli of K3 surfaces are the loci corresponding to Picard rank at least 2. We relate the degrees of the Noether-Lefschetz divisors to the GromovWitten theory of 1-parameter families ofK3 surfaces. The reduced K3 theory and the Yau-Zaslow formula play an important role. We use results of Borcherds for O(2, 19) lattices and proven mirror transforms to determine ...

متن کامل

Noether-lefschetz Theorem with Base Locus

For an arbitrary curve Z ⊂ P (possibly reducible, non-reduced, unmixed) lying on a normal surface, the general surface S of high degree containing Z is also normal, but often singular. We compute the class groups of the very general such surface, thereby extending the Noether-Lefschetz theorem (the special case when Z is empty). Our method is an adaptation of Griffiths and Harris’ degeneration ...

متن کامل

Symplectic four-manifolds and conformal blocks

We apply ideas from conformal field theory to study symplectic four-manifolds, by using modular functors to “linearise” Lefschetz fibrations. In Chern-Simons theory this leads to the study of parabolic vector bundles of conformal blocks. Motivated by the Hard Lefschetz theorem, we show the bundles of SU(2) conformal blocks associated to Kähler surfaces are Brill-Noether special, although the as...

متن کامل

A pr 2 00 5 Hamiltonian Noether theorem for gauge systems and two time physics

The Noether theorem for Hamiltonian constrained systems is revisited. In particular, our review presents a novel method to show that the gauge transformations are generated by the conserved quantities associated with the first class constraints. We apply our results to the relativistic point particle, to the Friedberg et al. model and, with special emphasis, to two time physics.

متن کامل

1 Semipositive Bundles and Brill - Noether Theory

We prove a Lefschetz hyperplane theorem for the determinantal loci of a morphism between two holomorphic vector bundles E and F over a complex manifold under the condition that E∗ ⊗ F is Griffiths k-positive. We apply this result to find some homotopy groups of the Brill-Noether loci for a generic curve.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002